
Inheritance

Inheritance is a fundamental object-oriented design technique used to
create and organize reusable classes

Inheritance

• Inheritance allows a software developer to derive a new class from
an existing one

• The existing class is called the parent class, or superclass, or base
class

• The derived class is called the child class or subclass

• As the name implies, the child inherits characteristics of the parent

• That is, the child class inherits the methods and data defined by the
parent class

Inheritance

• Inheritance relationships are shown in a UML class diagram using a
solid arrow with an unfilled triangular arrowhead pointing to the
parent class

Vehicle

Car

• Proper inheritance creates an is-a relationship,

meaning the child is a more specific version of the

parent

Inheritance

• A programmer can tailor a derived class as needed by adding new
variables or methods, or by modifying the inherited ones

• One benefit of inheritance is software reuse

• By using existing software components to create new ones, we
capitalize on all the effort that went into the design, implementation,
and testing of the existing software

Deriving Subclasses

• In Java, we use the reserved word extends to establish an inheritance
relationship

• See Words.java

• See Book.java

• See Dictionary.java

public class Car extends Vehicle

{

// class contents

}

//**

// Words.java Author: Lewis/Loftus

//

// Demonstrates the use of an inherited method.

//**

public class Words

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void main (String[] args)

{

Dictionary webster = new Dictionary();

System.out.println ("Number of pages: " + webster.getPages());

System.out.println ("Number of definitions: " +

webster.getDefinitions());

System.out.println ("Definitions per page: " +

webster.computeRatio());

}

}

//**

// Words.java Author: Lewis/Loftus

//

// Demonstrates the use of an inherited method.

//**

public class Words

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void main (String[] args)

{

Dictionary webster = new Dictionary();

System.out.println ("Number of pages: " + webster.getPages());

System.out.println ("Number of definitions: " +

webster.getDefinitions());

System.out.println ("Definitions per page: " +

webster.computeRatio());

}

}

Output

Number of pages: 1500

Number of definitions: 52500

Definitions per page: 35.0

//**

// Book.java Author: Lewis/Loftus

//

// Represents a book. Used as the parent of a derived class to

// demonstrate inheritance.

//**

public class Book

{

protected int pages = 1500;

//--

// Pages mutator.

//--

public void setPages (int numPages)

{

pages = numPages;

}

//--

// Pages accessor.

//--

public int getPages ()

{

return pages;

}

}

//**

// Dictionary.java Author: Lewis/Loftus

//

// Represents a dictionary, which is a book. Used to demonstrate

// inheritance.

//**

public class Dictionary extends Book

{

private int definitions = 52500;

//---

// Prints a message using both local and inherited values.

//---

public double computeRatio ()

{

return (double) definitions/pages;

}

continue

continue

//--

// Definitions mutator.

//--

public void setDefinitions (int numDefinitions)

{

definitions = numDefinitions;

}

//--

// Definitions accessor.

//--

public int getDefinitions ()

{

return definitions;

}

}

The protected Modifier

• Visibility modifiers affect the way that class members can be used in
a child class

• Variables and methods declared with private visibility cannot be
referenced in a child class

• They can be referenced in the child class if they are declared with
public visibility -- but public variables violate the principle of
encapsulation

• There is a third visibility modifier that helps in inheritance situations:
protected

The protected Modifier

• The protected modifier allows a child class to reference a variable or
method in the child class

• It provides more encapsulation than public visibility, but is not as
tightly encapsulated as private visibility

• A protected variable is also visible to any class in the same package as
the parent class

• Protected variables and methods can be shown with a # symbol
preceding them in UML diagrams

Class Diagram for Words

Book

pages : int

+ pageMessage() : void

Dictionary

- definitions : int

+ definitionMessage() : void

Words

+ main (args : String[]) : void

The super Reference

• Constructors are not inherited, even though they have public
visibility

• Yet we often want to use the parent's constructor to set up the
"parent's part" of the object

• The super reference can be used to refer to the parent class, and
often is used to invoke the parent's constructor

• A child’s constructor is responsible for calling the parent’s
constructor

The super Reference

• The first line of a child’s constructor should use the super reference
to call the parent’s constructor

• The super reference can also be used to reference other variables
and methods defined in the parent’s class

• See Words2.java

• See Book2.java

• See Dictionary2.java

//**

// Words2.java Author: Lewis/Loftus

//

// Demonstrates the use of the super reference.

//**

public class Words2

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void main (String[] args)

{

Dictionary2 webster = new Dictionary2 (1500, 52500);

System.out.println ("Number of pages: " + webster.getPages());

System.out.println ("Number of definitions: " +

webster.getDefinitions());

System.out.println ("Definitions per page: " +

webster.computeRatio());

}

}

//**

// Words2.java Author: Lewis/Loftus

//

// Demonstrates the use of the super reference.

//**

public class Words2

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void main (String[] args)

{

Dictionary2 webster = new Dictionary2 (1500, 52500);

System.out.println ("Number of pages: " + webster.getPages());

System.out.println ("Number of definitions: " +

webster.getDefinitions());

System.out.println ("Definitions per page: " +

webster.computeRatio());

}

}

Output

Number of pages: 1500

Number of definitions: 52500

Definitions per page: 35.0

//**

// Book2.java Author: Lewis/Loftus

//

// Represents a book. Used as the parent of a derived class to

// demonstrate inheritance and the use of the super reference.

//**

public class Book2

{

protected int pages;

//--

// Constructor: Sets up the book with the specified number of

// pages.

//--

public Book2 (int numPages)

{

pages = numPages;

}

continue

continue

//--

// Pages mutator.

//--

public void setPages (int numPages)

{

pages = numPages;

}

//--

// Pages accessor.

//--

public int getPages ()

{

return pages;

}

}

//**

// Dictionary2.java Author: Lewis/Loftus

//

// Represents a dictionary, which is a book. Used to demonstrate

// the use of the super reference.

//**

public class Dictionary2 extends Book2

{

private int definitions;

//---

// Constructor: Sets up the dictionary with the specified number

// of pages and definitions.

//---

public Dictionary2 (int numPages, int numDefinitions)

{

super(numPages);

definitions = numDefinitions;

}

continue

continue

//---

// Prints a message using both local and inherited values.

//---

public double computeRatio ()

{

return (double) definitions/pages;

}

//--

// Definitions mutator.

//--

public void setDefinitions (int numDefinitions)

{

definitions = numDefinitions;

}

//--

// Definitions accessor.

//--

public int getDefinitions ()

{

return definitions;

}

}

Multiple Inheritance

• Java supports single inheritance, meaning that a derived class can
have only one parent class

• Multiple inheritance allows a class to be derived from two or more
classes, inheriting the members of all parents

• Collisions, such as the same variable name in two parents, have to be
resolved

• Multiple inheritance is generally not needed, and Java does not
support it

Overriding Methods

• A child class can override the definition of an inherited method in
favor of its own

• The new method must have the same signature as the parent's
method, but can have a different body

• The type of the object executing the method determines which
version of the method is invoked

• See Messages.java

• See Thought.java

• See Advice.java

//**

// Thought.java Author: Lewis/Loftus

//

// Represents a stray thought. Used as the parent of a derived

// class to demonstrate the use of an overridden method.

//**

public class Thought

{

//---

// Prints a message.

//---

public void message()

{

System.out.println ("I feel like I'm diagonally parked in a " +

"parallel universe.");

System.out.println();

}

}

//**

// Advice.java Author: Lewis/Loftus

//

// Represents some thoughtful advice. Used to demonstrate the use

// of an overridden method.

//**

public class Advice extends Thought

{

//---

// Prints a message. This method overrides the parent's version.

//---

public void message()

{

System.out.println ("Warning: Dates in calendar are closer " +

"than they appear.");

System.out.println();

super.message(); // explicitly invokes the parent's version

}

}

//**

// Messages.java Author: Lewis/Loftus

//

// Demonstrates the use of an overridden method.

//**

public class Messages

{

//---

// Creates two objects and invokes the message method in each.

//---

public static void main (String[] args)

{

Thought parked = new Thought();

Advice dates = new Advice();

parked.message();

dates.message(); // overridden

}

}

//**

// Messages.java Author: Lewis/Loftus

//

// Demonstrates the use of an overridden method.

//**

public class Messages

{

//---

// Creates two objects and invokes the message method in each.

//---

public static void main (String[] args)

{

Thought parked = new Thought();

Advice dates = new Advice();

parked.message();

dates.message(); // overridden

}

}

Output

I feel like I'm diagonally parked in a parallel universe.

Warning: Dates in calendar are closer than they appear.

I feel like I'm diagonally parked in a parallel universe.

Overriding

• A method in the parent class can be invoked explicitly using the super
reference

• If a method is declared with the final modifier, it cannot be
overridden

• The concept of overriding can be applied to data and is called
shadowing variables

• Shadowing variables should be avoided because it tends to cause
unnecessarily confusing code

Overloading vs. Overriding

• Overloading deals with multiple methods with the same name in the
same class, but with different signatures

• Overriding deals with two methods, one in a parent class and one in
a child class, that have the same signature

• Overloading lets you define a similar operation in different ways for
different parameters

• Overriding lets you define a similar operation in different ways for
different object types

Quick Check

True or False?

A child class may define a method with

the same name as a method in the parent.

A child class can override the constructor

of the parent class.

A child class cannot override a final method

of the parent class.

It is considered poor design when a child

class overrides a method from the parent.

A child class may define a variable with the

same name as a variable in the parent.

Quick Check

True or False?

A child class may define a method with

the same name as a method in the parent.

A child class can override the constructor

of the parent class.

A child class cannot override a final method

of the parent class.

It is considered poor design when a child

class overrides a method from the parent.

A child class may define a variable with the

same name as a variable in the parent.

True

False

True

False

True, but

shouldn't

Class Hierarchies

• A child class of one parent can be the parent of another child,
forming a class hierarchy

Class Hierarchies

• Two children of the same parent are called siblings

• Common features should be put as high in the hierarchy as is
reasonable

• An inherited member is passed continually down the line

• Therefore, a child class inherits from all its ancestor classes

• There is no single class hierarchy that is appropriate for all situations

The Object Class

• A class called Object is defined in the java.lang package of the Java
standard class library

• All classes are derived from the Object class

• If a class is not explicitly defined to be the child of an existing class, it
is assumed to be the child of the Object class

• Therefore, the Object class is the ultimate root of all class
hierarchies

The Object Class

• The Object class contains a few useful methods, which are inherited
by all classes

• For example, the toString method is defined in the Object class

• Every time we define the toString method, we are actually overriding
an inherited definition

• The toString method in the Object class is defined to return a string
that contains the name of the object’s class along with a hash code

The Object Class

• The equals method of the Object class returns true if two references
are aliases

• We can override equals in any class to define equality in some more
appropriate way

• As we've seen, the String class defines the equals method to return
true if two String objects contain the same characters

• The designers of the String class have overridden the equals method
inherited from Object in favor of a more useful version

Visibility Revisited

• It's important to understand one subtle issue related to inheritance
and visibility

• All variables and methods of a parent class, even private members,
are inherited by its children

• As we've mentioned, private members cannot be referenced by
name in the child class

• However, private members inherited by child classes exist and can
be referenced indirectly

Visibility Revisited

• Because the parent can refer to the private member, the child can
reference it indirectly using its parent's methods

• The super reference can be used to refer to the parent class, even if
no object of the parent exists

• See FoodAnalyzer.java

• See FoodItem.java

• See Pizza.java

//**

// FoodAnalyzer.java Author: Lewis/Loftus

//

// Demonstrates indirect access to inherited private members.

//**

public class FoodAnalyzer

{

//---

// Instantiates a Pizza object and prints its calories per

// serving.

//---

public static void main (String[] args)

{

Pizza special = new Pizza (275);

System.out.println ("Calories per serving: " +

special.caloriesPerServing());

}

}

//**

// FoodAnalyzer.java Author: Lewis/Loftus

//

// Demonstrates indirect access to inherited private members.

//**

public class FoodAnalyzer

{

//---

// Instantiates a Pizza object and prints its calories per

// serving.

//---

public static void main (String[] args)

{

Pizza special = new Pizza (275);

System.out.println ("Calories per serving: " +

special.caloriesPerServing());

}

}

Output

Calories per serving: 309

//**

// FoodItem.java Author: Lewis/Loftus

//

// Represents an item of food. Used as the parent of a derived class

// to demonstrate indirect referencing.

//**

public class FoodItem

{

final private int CALORIES_PER_GRAM = 9;

private int fatGrams;

protected int servings;

//---

// Sets up this food item with the specified number of fat grams

// and number of servings.

//---

public FoodItem (int numFatGrams, int numServings)

{

fatGrams = numFatGrams;

servings = numServings;

}

continue

continue

//---

// Computes and returns the number of calories in this food item

// due to fat.

//---

private int calories()

{

return fatGrams * CALORIES_PER_GRAM;

}

//---

// Computes and returns the number of fat calories per serving.

//---

public int caloriesPerServing()

{

return (calories() / servings);

}

}

//**

// Pizza.java Author: Lewis/Loftus

//

// Represents a pizza, which is a food item. Used to demonstrate

// indirect referencing through inheritance.

//**

public class Pizza extends FoodItem

{

//---

// Sets up a pizza with the specified amount of fat (assumes

// eight servings).

//---

public Pizza (int fatGrams)

{

super (fatGrams, 8);

}

}

Constructors in Inheritance

• Do you have to provide a constructor for a class?
• No, a no-argument, default constructor is implicitly provided

• This default constructor calls the no-argument constructor of the
super-class

• If super-class does not have no-argument version of the constructor
• A compilation error occurs

• Make sure there is such a constructor in the superclass

• What if there is no super-class?
• Object class is the implicit super-class, and it does have a no-argument

constructor

Constructors

• What happens when no constructor is defined for a class?

 No-argument constructor will be provided implicitly for that
class

class C2 extends C1 {

// no constructor is defined

public C2() { // this constructor is

super(); // automatically provided by Java.

}

}

• If another constructor of the class is present, no-argument version of
the constructor will not be provided automatically.

Constructors of Sub-Classes

• The initialization of the fields of a sub-class consists of two phases:
• The initialization of the inherited fields

• The initialization of the fields that are declared in that sub-class.

• One of the constructors of the super-class must be invoked to
initialize the fields inherited from the super-class.
• A super-class constructor must be invoked explicitly; Otherwise the no-

argument constructor of the super-class will be automatically invoked

• This invocation must be the first statement of the constructor of the sub-
class. (Or the one of the constructors of the sub-class must invoke another
version of the constructor of that sub-class).

Constructors of Sub-Classes

class C1 {

private int x;

public C1() { x=0; }

public C1(int xv) { x=xv; }

}

class C2 extends C1 {

private int y;

public C2(int xv, int yv) {

super(xv); the constructor of the super-class is explicitly invoked

y = yv;

}

public C2(int yv) {

this(1,yv); Another version of the constructor of this class is invoked

}

public C2() {

y = 2; No-argument version of the constructor of the super-class

} } is implicitly invoked. super();

If the subclass constructor does not specify which superclass constructor to invoke then

the compiler will automatically call the accessible no-args constructor in the superclass.

Order of Initialization Step

• The fields of the super-class are initialized using default values.

• One of the constructors of the super-class is executed.

• The fields of the extended class (sub-class) are initialized using the
default values.

• One of the constructors of the extended class (sub-class) is executed.

Order of Initialization Step (cont.)

class C1 {

private int x = 1; // executed first

public C1() {

x = 2; // executed second

}

}

class C2 extends C1 {

private int y = 3; // executed third

public C2() {

super();

y = 4 ; // executed fourth

}

}

Inheritance Design Issues

• Every derivation should be an is-a relationship

• Think about the potential future of a class hierarchy, and design
classes to be reusable and flexible

• Find common characteristics of classes and push them as high in the
class hierarchy as appropriate

• Override methods as appropriate to tailor or change the functionality
of a child

• Add new variables to children, but don't redefine (shadow) inherited
variables

Inheritance Design Issues

• Allow each class to manage its own data; use the super reference to
invoke the parent's constructor to set up its data

• Override general methods such as toString and equals with
appropriate definitions

• Use abstract classes to represent general concepts that derived
classes have in common

• Use visibility modifiers carefully to provide needed access without
violating encapsulation

Restricting Inheritance

• If the final modifier is applied to a method, that method cannot be
overridden in any derived classes

• If the final modifier is applied to an entire class, then that class
cannot be used to derive any children at all

• Therefore, an abstract class cannot be declared as final

Copyright © 2014 by John Wiley & Sons. All rights reserved. 53

Self Check 9.4

Answer: Vehicle, Truck, Motorcycle

Consider the method doSomething(Car c). List all

vehicle classes from Figure whose objects cannot be

passed to this method.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 54

Self Check 9.7

Suppose the class Employee is declared as follows:

public class Employee

{

private String name;

private double baseSalary;

public void setName(String newName) { . . . }

public void setBaseSalary(double newSalary) { . . . }

public String getName() { . . . }

public double getSalary() { . . . }

}

Declare a class Manager that inherits from the class

Employee and adds an instance variable bonus for

storing a salary bonus. Omit constructors and methods.

Continued

Copyright © 2014 by John Wiley & Sons. All rights reserved. 55

Self Check 9.7

Answer:

public class Manager extends Employee

{

private double bonus;

// Constructors and methods omitted

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 56

Self Check 9.8

Answer: name, baseSalary, and bonus

Which instance variables does the Manager class have?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 57

Self Check 9.9

Answer:

public class Manager extends Employee

{

. . .

public double getSalary() {

. . .

}

}

In the Manager class, provide the method header (but not

the implementation) for a method that overrides the

getSalary method from the class Employee.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 58

Self Check 9.10

Answer: getName, setName, setBaseSalary

Which methods does the Manager class from Self Check 9

inherit?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 59

Example - Questions

Copyright © 2014 by John Wiley & Sons. All rights reserved. 60

Inheritance Hierarchies

Inheritance Hierarchy of Question Types

 Example: Computer-graded quiz

• There are different kinds of questions

• A question can display its text, and it can check whether a given

response is a correct answer.

• You can form subclasses of the Question class.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 61

section_1/Question.java

1 /**

2 A question with a text and an answer.

3 */

4 public class Question

5 {

6 private String text;

7 private String answer;

8

9 /**

10 Constructs a question with empty question and answer.

11 */

12 public Question()

13 {

14 text = "";

15 answer = "";

16 }

17

18 /**

19 Sets the question text.

20 @param questionText the text of this question

21 */

22 public void setText(String questionText)

23 {

24 text = questionText;

25 }

26

Continued

code/section_1/Question.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 62

section_1/Question.java

27 /**

28 Sets the answer for this question.

29 @param correctResponse the answer

30 */

31 public void setAnswer(String correctResponse)

32 {

33 answer = correctResponse;

34 }

35

36 /**

37 Checks a given response for correctness.

38 @param response the response to check

39 @return true if the response was correct, false otherwise

40 */

41 public boolean checkAnswer(String response)

42 {

43 return response.equals(answer);

44 }

45

46 /**

47 Displays this question.

48 */

49 public void display()

50 {

51 System.out.println(text);

52 }

53 }

code/section_1/Question.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 63

section_1/QuestionDemo1.java

1 import java.util.Scanner;

2

3 /**

4 This program shows a simple quiz with one question.

5 */

6 public class QuestionDemo1

7 {

8 public static void main(String[] args)

9 {

10 Scanner in = new Scanner(System.in);

11

12 Question q = new Question();

13 q.setText("Who was the inventor of Java?");

14 q.setAnswer("James Gosling");

15

16 q.display();

17 System.out.print("Your answer: ");

18 String response = in.nextLine();

19 System.out.println(q.checkAnswer(response));

20 }

21 }

22

Continued

code/section_1/QuestionDemo1.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 64

section_1/QuestionDemo1.java

Program Run:
Who was the inventor of Java?

Your answer: James Gosling

true

code/section_1/QuestionDemo1.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 65

Implementing Subclasses

 To get a ChoiceQuestion class, implement it as a subclass of

Question

• Specify what makes the subclass different from its superclass.

• Subclass objects automatically have the instance variables that are

declared in the superclass.

• Only declare instance variables that are not part of the superclass

objects.

 A subclass inherits all methods that it does not override.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 66

Implementing Subclasses

 The subclass inherits all public methods from the

superclass.

 You declare any methods that are new to the subclass.

 You change the implementation of inherited methods if

the inherited behavior is not appropriate.

 Override a method: supply a new implementation for an

inherited method

Copyright © 2014 by John Wiley & Sons. All rights reserved. 67

Implementing Subclasses

A ChoiceQuestion object differs from a Question object

in three ways:

 Its objects store the various choices for the answer.

 There is a method for adding answer choices.

 The display method of the ChoiceQuestion class shows

these choices so that the respondent can choose one of

them.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 68

Implementing Subclasses

 The ChoiceQuestion class needs to spell out the three

differences:

public class ChoiceQuestion extends Question

{

// This instance variable is added to the subclass

private ArrayList<String> choices;

// This method is added to the subclass

public void addChoice(String choice, boolean correct) { . . . }

// This method overrides a method from the superclass

public void display() { . . . }

}

 The extends reserved word indicates that a class inherits

from a superclass.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 69

Implementing Subclasses

 UML of ChoiceQuestion and Question

The ChoiceQuestion Class Adds an Instance Variable and a

Method, and Overrides a Method

Copyright © 2014 by John Wiley & Sons. All rights reserved. 70

Syntax 9.1 Subclass Declaration

Copyright © 2014 by John Wiley & Sons. All rights reserved. 71

Implementing Subclasses

 A ChoiceQuestion object

 You can call the inherited methods on a subclass object:

choiceQuestion.setAnswer("2");

 The private instance variables of the superclass are

inaccessible.

 The ChoiceQuestion methods cannot directly access the

instance variable answer.

 ChoiceQuestion methods must use the public interface

of the Question class to access its private data.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 72

Implementing Subclasses

 Adding a new method: addChoice

public void addChoice(String choice, boolean correct)

{

choices.add(choice);

if (correct)

{

// Convert choices.size() to string

String choiceString = "" + choices.size();

setAnswer(choiceString);

}

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 73

Implementing Subclasses

 addChoice method can not just access the answer

variable in the superclass:

 It must use the setAnswer method

 Invoke setAnswer on the implicit parameter:

setAnswer(choiceString);

OR

this.setAnswer(choiceString);

Copyright © 2014 by John Wiley & Sons. All rights reserved. 74

Overriding Methods

 Problem: ChoiceQuestion's display method can’t access

the text variable of the superclass directly because it is

private.

 Solution: It can call the display method of the

superclass, by using the reserved word super

public void display()

{

// Display the question text

super.display(); // OK

// Display the answer choices

. . .

}

 super is a reserved word that forces execution of the

superclass method.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 75

section_3/ChoiceQuestion.java

1 import java.util.ArrayList;

2

3 /**

4 A question with multiple choices.

5 */

6 public class ChoiceQuestion extends Question

7 {

8 private ArrayList<String> choices;

9

10 /**

11 Constructs a choice question with no choices.

12 */

13 public ChoiceQuestion()

14 {

15 choices = new ArrayList<String>();

16 }

17

Continued

code/section_3/ChoiceQuestion.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 76

section_3/ChoiceQuestion.java

18 /**

19 Adds an answer choice to this question.

20 @param choice the choice to add

21 @param correct true if this is the correct choice, false otherwise

22 */

23 public void addChoice(String choice, boolean correct)

24 {

25 choices.add(choice);

26 if (correct)

27 {

28 // Convert choices.size() to string

29 String choiceString = "" + choices.size();

30 setAnswer(choiceString);

31 }

32 }

33

Continued

code/section_3/ChoiceQuestion.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 77

section_3/ChoiceQuestion.java

34 public void display()

35 {

36 // Display the question text

37 super.display();

38 // Display the answer choices

39 for (int i = 0; i < choices.size(); i++)

40 {

41 int choiceNumber = i + 1;

42 System.out.println(choiceNumber + ": " + choices.get(i));

43 }

44 }

45 }

46

code/section_3/ChoiceQuestion.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 78

section_3/QuestionDemo2.java

1 import java.util.Scanner;

2

3 /**

4 This program shows a simple quiz with two choice questions.

5 */

6 public class QuestionDemo2

7 {

8 public static void main(String[] args)

9 {

10 ChoiceQuestion first = new ChoiceQuestion();

11 first.setText("What was the original name of the Java language?");

12 first.addChoice("*7", false);

13 first.addChoice("Duke", false);

14 first.addChoice("Oak", true);

15 first.addChoice("Gosling", false);

16

17 ChoiceQuestion second = new ChoiceQuestion();

18 second.setText("In which country was the inventor of Java born?");

19 second.addChoice("Australia", false);

20 second.addChoice("Canada", true);

21 second.addChoice("Denmark", false);

22 second.addChoice("United States", false);

23

24 presentQuestion(first);

25 presentQuestion(second);

26 }

27

Continued

code/section_3/QuestionDemo2.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 79

section_3/QuestionDemo2.java

28 /**

29 Presents a question to the user and checks the response.

30 @param q the question

31 */

32 public static void presentQuestion(ChoiceQuestion q)

33 {

34 q.display();

35 System.out.print("Your answer: ");

36 Scanner in = new Scanner(System.in);

37 String response = in.nextLine();

38 System.out.println(q.checkAnswer(response));

39 }

40 }

41

Continued

code/section_3/QuestionDemo2.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 80

section_3/QuestionDemo2.java

Program Run:
What was the original name of the Java language?

1: *7

2: Duke

3: Oak

4: Gosling

Your answer: *7

false

In which country was the inventor of Java born?

1: Australia

2: Canada

3: Denmark

4: United States

Your answer: 2

true

code/section_3/QuestionDemo2.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 81

Self Check 9.5

Answer: It shouldn’t. A quiz isn’t a question; it has

questions.

Should a class Quiz inherit from the class Question?

Why or why not?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 82

Common Error: Replicating Instance

Variables from the Superclass

 A subclass has no access to the private instance variables

of the superclass:

public ChoiceQuestion(String questionText)

{

text = questionText; // Error—tries to access

// private superclass variable

}

 Beginner's error: “solve” this problem by adding another

instance variable with same name

 Error!

public class ChoiceQuestion extends Question

{

private ArrayList<String> choices;

private String text; // Don’t!

. . .

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 83

Common Error: Replicating Instance

Variables from the Superclass

 The constructor compiles, but it doesn’t set the correct

text!

 The ChoiceQuestion constructor should call the

setText method of the Question class.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 84

Self Check 9.11

Answer: The method is not allowed to access the

instance variable text from the superclass.

What is wrong with the following implementation of the

display method?

public class ChoiceQuestion

{

. . .

public void display()

{

System.out.println(text);

for (int i = 0; i < choices.size(); i++)

{

int choiceNumber = i + 1;

System.out.println(choiceNumber + ": " + choices.get(i));

}

}

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 85

Self Check 9.11

Answer: The type of the this reference is

ChoiceQuestion. Therefore, the display method of

ChoiceQuestion is selected, and the method calls

itself.

What is wrong with the following implementation of the

display method?

public class ChoiceQuestion

{

. . .

public void display()

{

this.display();

for (int i = 0; i < choices.size(); i++)

{

int choiceNumber = i + 1;

System.out.println(choiceNumber + ": " +

choices.get(i));

}

}

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 86

Self Check 9.13

Answer: Because there is no ambiguity. The subclass

doesn’t have a setAnswer method.

Look again at the implementation of the addChoice method

that calls the setAnswer method of the superclass. Why don’t

you need to call super.setAnswer?

